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1. INTRODUCTION

Movable arms, tall buildings, towers and antennae are the most typical examples that can
be reduced to a Timoshenko beam variable cross-section. By using this theory, free
vibration frequencies have been obtained by many authors, employing "nite element
techniques. For example, To [1, 2] examined a beam with varying cross-section, for various
boundary conditions, by using a cubic}linear interpolating function. A similar approach
was used by Cleghorn and Tabarrok [3], who were able to obtain the exact sti!ness matrix
of the element and therefore more accurate results were obtained, with less e!ort. Rossi et al.
[4] have presented a re"ned "nite element formulation for tapered beams elements. Laura
and Gutierrez [5] employ a re"ned Rayleigh}Ritz method and a sophisticated "nite
element model, but their results are limited to the fundamental frequency. For a cantilever
uniform beam with a tip mass at the free end, Bruch and Mitchell [6] have obtained the
exact solution. Shortly after, Abramovich and Hamburger [7] extended the analysis to
eccentric masses. If the cross-section is supposed to vary according to a continuous law,
Laura et al. [8] proposed an FEM-like algorithm, which was illustrated earlier by
Prezemieniecki [9]. Both in reference [5] and references [8}10], upper bounds to the true
results for the fundamental frequencies are obtained.

In this article, as already emphasized in reference [11], a Lagrangian approach is used.
The structure is reduced to a set of rigid bars linked together by means of elastic constraints,
and consequently a sti!er structure than the real one is obtained, whereas
a displacement-based FE method leads to a more #exible system.

2. ANALYSIS OF THE MODEL

Consider the beam in Figure 1, in which the width remains constant and the height of the
cross-section varies linearly, according to the following law:
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Figure 1. The structural system under study for the vibration problem.

Figure 2. The discretization model.

LETTERS TO THE EDITOR 543
The beam is supposed to be divided into t rigid bars, linked together by means of elastic
elements which allow relative rotations and relative vertical displacements. Therefore, the
structure is reduced to a "nite-degree-of-freedom system. The displacements of the ith rigid
bar can be easily deduced if the vertical displacements of the both its ends are known
(Figure 2).

The elastic constraints take into account both the bending deformation and the shear
deformation. The strain energy of the system is given by the sum of the bending strain and of
the shear strain energy. At the ith abscissa, the following linear relationship holds:
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where E and G are the Young's and the shear moduli respectively, A is the cross-sectional
area, I is the moment of inertia and k the shear factor.
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the relative rotations are written as
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and the relative displacements as
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or, in matrix from as

Du"Ac, DV"Bc. (8, 9)

The kinetic energy can be written as
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The strain energy of the whole structure, in matrix form, can therefore be calculated as
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TABLE 1

First three frequency coe.cients p
i
for various values of r and >* ¸aura et al. [8]

p
1

p
2

p
3

p
4

r >* Present [8] Present [8] Present [8] Present [8]

0)02 0 3)584 3)59 19)984 20)17 52)445 53)48 97)210 100)32
0)2 2)479 2)61 16)060 16)44 45)236 46)23 87)525 89)97
0)4 2)002 2)14 15)228 15)52 44)219 45)03 86)508 88)63
0)6 1)727 1)86 14)868 15)11 43)820 44)54 86)125 88)22
0)8 1)537 1)67 14)667 14)87 43)606 44)28 85)924 87)85
1 1)402 1)52 14)542 14)72 43)474 44)12 85)801 87)75

0)04 0 3)552 3)56 18)855 19)01 46)693 47)43 81)483 83)48
0)2 2)458 2)59 15)328 15)67 40)845 41)55 74)449 75)84
0)4 1)990 2)13 14)559 14)82 39)474 40)52 73)650 74)82
0)6 1)714 1)85 14)225 14)43 39)628 40)10 73)346 74)37
0)8 1)528 1)66 14)039 14)21 39)444 39)86 73)187 74)27
1 1)393 1)51 13)921 14)07 39)328 39)72 73)088 74)09

0)08 0 3)415 3)42 15)744 15)84 34)960 35)35 55)881 56)91
0)2 2)390 2)51 13)188 13)42 31)326 31)66 52)231 52)81
0)4 1)940 2)07 12)585 12)76 30)708 30)92 51)737 52)13
0)6 1)674 1)80 12)320 12)45 30)457 30)60 51)544 51)84
0)8 1)494 1)62 12)170 12)28 30)322 30)42 51)442 51)74
1 1)362 1)48 12)074 12)16 30)237 30)32 51)370 51)64
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or, in matrix form as

u"Rc.

Henceforth, the kinetic energy becomes
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where M
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is a diagonal matrix of the masses, and
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The equation of motion can be written as

McK#Kc"0 (13)
Figure 3. (a) First mode: in#uence of tip mass for r"0)08, h*"0)8 and Z"0. (b) Second mode: as a Figure
3(a). (c) Third mode; as Figure 3(a): **, >*"0; - - - - - -, >*"0)2; ))))))))))), >*"0)4; } ) } ) } ) }, >*"0)6;
} )) } )) } )) }, >*"0)8.



Figure 3. Continued.
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and the free vibration frequencies are calculated as the eigenvalue problem imposing

det (K!u2M)"0. (14)

4. RESULTS AND CONCLUSION

The natural frequencies of the structure can be calculated from equation (14). More
particularly, the non-dimensional coe$cients
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As a numerical examples let us consider the beam with ratio E/G"2)6, shear factor k"5/6
and J"M J*2. The beam is discretized into 20 rigid bars. In Table 1 are shown the
frequency coe$cients p

i
for various factors r and for increasing >*. For the sake of

comparison, the same results are also given, as obtained by means of the "nite element
method (FEM): see Laura et al. [8]. Due to the nature of the two methods, it is evident that
the free vibration frequencies, as obtained by means of the Lagrangian procedure, will be
slightly lower than the corresponding frequencies obtained by adopting the "nite element
approach. The discrepancies can become signi"cant for the higher mode, and increase for
increasing >* value. On the other hand, they can be reduced by increasing both the
discretization levels, so that a narrow lower}upper bound to the true solution can be
obtained.

The three mode shapes of the beam for r"0)08, h*"0)8, Z"0 and various values of>*
are shown in Figure 3(a)}(c). It can be noticed that the presence of the tip mass becomes
noticeable for the higher modes, and obviously it reduces the free end displacement. For



Figure 4. First three mode shapes: in#uence of tip mass inertia: ** Z"0)25; } } } Z"0)5.

Figure 5. First three mode shapes: in#uence of r parameter: ** r"0)04; } } }} , r"0)08.
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>*PR this displacement tends to zero, and the (n#1)th vibration mode tends to the
corresponding nth vibration mode of the clamped}pinned beam.

In Figure 4 are shown for >*"1 and various Z. The results for r"0)04 and 0)08 are
given in Figure 5. It is evident that for r"0 the classical Euler}Bernoulli results are
recovered, and consequently the beam becomes more #exible as r increases.

Finally, in Table 2, the p
i
(i"1}4) coe$cients for r"0)08, h*"0)8, >*"1 and various

values Z are given.
It seems intuitive that the rotation at ¸ becomes smaller when Z increases. The proposed

approach is particularly useful for beams with complex geometry and di!erent boundary
conditions. Moreover, together with the variational Ritz-like methods, it allows deduction
of narrow lower}upper bounds to the true results.



TABLE 2

First four frequency coe.cients p
i
for r"0)08, >*"l and various Z values

Z p
1

p
2

p
3

p
4

0 1)3622 12)074 30)236 51)370
0)25 1)2845 5)446 16)340 33)690
0)5 1)0917 3)322 15)854 33)563
1 0)7188 2)545 15)740 33)532
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APPENDIX: NOMENCLATURE

h* taper ratio
E, G Young's modulus, shear modulus
¸ span of the beam
l
i

length of the ith rigid bar
I, A moment of inertia, cross-section
m

i
, m

t
ith mass, beam mass

M, I
M

mass at the tip; moment of inertia of the mass
J* radius of inertia of the mass
k shear factor
c vector Lagrangian co-ordinates
v
i

displacements of the bars
M

M
mass matrix

M1 matrix of the rotatory inertia
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>I *, Z non-dimensional parameters
t number of rigid bars
Du, Dv relative rotation, relative displacements
u
M

rotation of the mass at the tip
o mass density
u, j free frequency, frequency coe$cient
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