FREE VIBRATION OF A RESTRAINED SHEAR-DEFORMABLE TAPERED BEAM WITH A TIP MASS AT ITS FREE END*

N. M. Auciello
Department of Structural Engineering, University of Basilicata, Macchia Romana, 85100, Potenza, Italy

(Received 5 January 2000, and in final form 22 March 2000)

1. INTRODUCTION

Movable arms, tall buildings, towers and antennae are the most typical examples that can be reduced to a Timoshenko beam variable cross-section. By using this theory, free vibration frequencies have been obtained by many authors, employing finite element techniques. For example, To [1, 2] examined a beam with varying cross-section, for various boundary conditions, by using a cubic-linear interpolating function. A similar approach was used by Cleghorn and Tabarrok [3], who were able to obtain the exact stiffness matrix of the element and therefore more accurate results were obtained, with less effort. Rossi et al. [4] have presented a refined finite element formulation for tapered beams elements. Laura and Gutierrez [5] employ a refined Rayleigh-Ritz method and a sophisticated finite element model, but their results are limited to the fundamental frequency. For a cantilever uniform beam with a tip mass at the free end, Bruch and Mitchell [6] have obtained the exact solution. Shortly after, Abramovich and Hamburger [7] extended the analysis to eccentric masses. If the cross-section is supposed to vary according to a continuous law, Laura et al. [8] proposed an FEM-like algorithm, which was illustrated earlier by Prezemieniecki [9]. Both in reference [5] and references [8-10], upper bounds to the true results for the fundamental frequencies are obtained.

In this article, as already emphasized in reference [11], a Lagrangian approach is used. The structure is reduced to a set of rigid bars linked together by means of elastic constraints, and consequently a stiffer structure than the real one is obtained, whereas a displacement-based FE method leads to a more flexible system.

2. ANALYSIS OF THE MODEL

Consider the beam in Figure 1, in which the width remains constant and the height of the cross-section varies linearly, according to the following law:

$$
\begin{equation*}
h(z)=h_{0}\left(1+\frac{h^{*}-1}{L} z\right), \quad I(z)=I_{0}\left(1+\frac{h^{*}-1}{L} z\right)^{3} \tag{1,2}
\end{equation*}
$$

where h_{0} and I_{0} are the height of the cross-section and the cross-sectional inertia at the left end, and $h^{*}=h(L) / h_{0}$.

[^0]

Figure 1. The structural system under study for the vibration problem.

Figure 2. The discretization model.

The beam is supposed to be divided into t rigid bars, linked together by means of elastic elements which allow relative rotations and relative vertical displacements. Therefore, the structure is reduced to a finite-degree-of-freedom system. The displacements of the i th rigid bar can be easily deduced if the vertical displacements of the both its ends are known (Figure 2).

The elastic constraints take into account both the bending deformation and the shear deformation. The strain energy of the system is given by the sum of the bending strain and of the shear strain energy. At the i th abscissa, the following linear relationship holds:

$$
\begin{equation*}
U_{i}=\frac{1}{2}\left(M_{i} \Delta \varphi_{i}+T_{i} \Delta \mathrm{v}_{i}\right), \tag{3}
\end{equation*}
$$

where M_{i} and T_{i} are the bending moment and the shear stress. The strain energy of the structure is

$$
\begin{align*}
U & =\frac{1}{2} \sum_{i=1}^{t+1}\left(2 E \frac{I_{i} I_{i+1}}{I_{i+1} l_{i}+I_{i} l_{i}}\right) \Delta \varphi_{i}^{2}+\frac{1}{2} \sum_{i=1}^{t+1}\left(2 G k \frac{A_{i} A_{i+1}}{A_{i+1} l_{i}+A_{i} l_{i+1}}\right) \Delta v_{i}^{2} \\
& =\frac{1}{2} \sum_{i=1}^{t+1}\left(k_{f i} \Delta \varphi_{i}^{2}+k_{s i} \Delta v_{i}^{2}\right) \tag{4}
\end{align*}
$$

where E and G are the Young's and the shear moduli respectively, A is the cross-sectional area, I is the moment of inertia and k the shear factor.

Substituting

$$
\begin{equation*}
\mathbf{c}^{\mathrm{T}}=\left[v_{1}, v_{2}, \ldots, v_{2 t}, \varphi_{M}\right] \tag{5}
\end{equation*}
$$

the relative rotations are written as
$\Delta \varphi_{1}=\frac{\left(v_{1}-v_{2}\right)}{l_{1}}-\varphi_{1}, \quad \Delta \varphi_{i}=\frac{\left(v_{2 i-1}-v_{2 i}\right)}{l_{i}}+\frac{\left(v_{2 i-2}-v_{2 i-3}\right)}{l_{i-1}}, \quad \Delta \varphi_{t+1}=v_{2 t}-\frac{v_{2 t-1}}{l_{t}}+\varphi_{M}$
and the relative displacements as

$$
\begin{equation*}
\Delta v_{1}=v_{1}, \quad \Delta v_{1}=v_{2 i-1}-v_{2 i-2}, \quad \Delta v_{t+1}=0 \tag{7}
\end{equation*}
$$

or, in matrix from as

$$
\begin{equation*}
\Delta \varphi=\mathbf{A c}, \quad \Delta \mathbf{V}=\mathbf{B} \mathbf{c} \tag{8,9}
\end{equation*}
$$

The kinetic energy can be written as

$$
\begin{equation*}
T=\frac{1}{2} \sum_{i=1}^{2 t} m_{i} \dot{v}_{i}^{2}+\frac{1}{2} \sum_{i=1}^{t} \rho l_{i} I_{i} \dot{r}_{i}^{2}+\frac{1}{2} I_{M} \dot{\varphi}_{M}^{2} . \tag{10}
\end{equation*}
$$

The strain energy of the whole structure, in matrix form, can therefore be calculated as

$$
\begin{equation*}
U=\frac{1}{2} \mathbf{c}^{\mathrm{T}}\left[\mathbf{A}^{\mathrm{T}} \mathbf{D}_{f} \mathbf{A}+\mathbf{B}^{\mathrm{T}} \mathbf{D}_{s} \mathbf{B}\right] \mathbf{c} \tag{11}
\end{equation*}
$$

where \mathbf{D}_{f} and \mathbf{D}_{s} are the diagonal matrices of the coefficients $k_{f i}$ and $k_{s i}$ respectively. The absolute rotations can be expressed as a function of the vector \mathbf{c} as

$$
\varphi_{i}=v_{2 i}-v_{2 i-1}, \quad i=1, \ldots, t, \quad \varphi_{t+1}=\varphi_{M}
$$

Table 1
First three frequency coefficients p_{i} for various values of r and Y^{*} Laura et al. [8]

r	Y^{*}	p_{1}		p_{2}		p_{3}		p_{4}	
		Present	[8]	Present	[8]	Present	[8]	Present	[8]
0.02	0	3.584	3.59	19.984	$20 \cdot 17$	$52 \cdot 445$	$53 \cdot 48$	97.210	$100 \cdot 32$
	$0 \cdot 2$	2.479	$2 \cdot 61$	16.060	16.44	$45 \cdot 236$	$46 \cdot 23$	87.525	89.97
	$0 \cdot 4$	$2 \cdot 002$	$2 \cdot 14$	15.228	15.52	44.219	45.03	86.508	88.63
	$0 \cdot 6$	1.727	1.86	14.868	15.11	$43 \cdot 820$	44.54	$86 \cdot 125$	88.22
	$0 \cdot 8$	1.537	1.67	14.667	14.87	$43 \cdot 606$	44.28	85.924	87.85
	1	1.402	1.52	14.542	14.72	43.474	$44 \cdot 12$	85-801	87.75
$0 \cdot 04$	0	3.552	3.56	18.855	19.01	$46 \cdot 693$	47.43	81.483	83.48
	$0 \cdot 2$	2.458	2.59	15.328	15.67	$40 \cdot 845$	41.55	$74 \cdot 449$	$75 \cdot 84$
	$0 \cdot 4$	$1 \cdot 990$	$2 \cdot 13$	14.559	14.82	39.474	40.52	$73 \cdot 650$	74.82
	$0 \cdot 6$	1.714	$1 \cdot 85$	14.225	14.43	$39 \cdot 628$	$40 \cdot 10$	$73 \cdot 346$	74.37
	$0 \cdot 8$	1.528	1.66	14.039	14.21	$39 \cdot 444$	39.86	73-187	74.27
	1	1.393	$1 \cdot 51$	13.921	14.07	$39 \cdot 328$	39.72	73.088	74.09
$0 \cdot 08$	0	3.415	3.42	$15 \cdot 744$	15.84	$34 \cdot 960$	35.35	55.881	56.91
	$0 \cdot 2$	$2 \cdot 390$	2.51	$13 \cdot 188$	$13 \cdot 42$	$31 \cdot 326$	31.66	52.231	52.81
	$0 \cdot 4$	1.940	2.07	12.585	12.76	$30 \cdot 708$	$30 \cdot 92$	51.737	52.13
	$0 \cdot 6$	1.674	1.80	12.320	$12 \cdot 45$	$30 \cdot 457$	$30 \cdot 60$	51.544	51.84
	$0 \cdot 8$	1.494	1.62	$12 \cdot 170$	12.28	30.322	$30 \cdot 42$	$51 \cdot 442$	51.74
	1	$1 \cdot 362$	$1 \cdot 48$	12.074	$12 \cdot 16$	$30 \cdot 237$	$30 \cdot 32$	51-370	51.64

or, in matrix form as

$$
\varphi=\mathbf{R} \mathbf{c} .
$$

Henceforth, the kinetic energy becomes

$$
\begin{equation*}
\frac{1}{2} \dot{\mathbf{c}}^{\mathrm{T}}\left[\mathbf{M}_{M}+\mathbf{R}^{\mathrm{T}} \overline{\mathbf{M}} \mathbf{R}\right] \dot{\mathbf{c}}=\frac{1}{2} \dot{\mathbf{c}}^{\mathrm{T}} \mathbf{M} \dot{\mathbf{c}}, \tag{12}
\end{equation*}
$$

where \mathbf{M}_{M} is a diagonal matrix of the masses, and

$$
\begin{aligned}
& \bar{M}_{i}=\rho I_{i} l_{i}, \quad i=1, \ldots, t, \\
& \bar{M}_{i+1}=\rho I_{M}, \quad i=t+1 .
\end{aligned}
$$

The equation of motion can be written as

$$
\begin{equation*}
\mathbf{M} \ddot{\mathbf{c}}+\mathbf{K c}=\mathbf{0} \tag{13}
\end{equation*}
$$

Figure 3. (a) First mode: influence of tip mass for $r=0 \cdot 08, h^{*}=0 \cdot 8$ and $Z=0$. (b) Second mode: as a Figure 3(a). (c) Third mode; as Figure 3(a):,$- Y^{*}=0 ;----, Y^{*}=0 \cdot 2 ; \cdots \cdots \cdots \cdot, Y^{*}=0 \cdot 4 ;-\cdot-\cdot \cdot-, Y^{*}=0 \cdot 6$; $-. .-. .-. .-Y^{*}=0 \cdot 8$.

Figure 3. Continued.
and the free vibration frequencies are calculated as the eigenvalue problem imposing

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{K}-\omega^{2} \mathbf{M}\right)=0 \tag{14}
\end{equation*}
$$

4. RESULTS AND CONCLUSION

The natural frequencies of the structure can be calculated from equation (14). More particularly, the non-dimensional coefficients

$$
p_{i}=\omega_{i} L^{2} \sqrt{\frac{\rho A_{0}}{E I_{0}}}
$$

are given as function of the parameters

$$
Y^{*}=\frac{M}{m_{t}}, \quad Z=\frac{J^{*}}{L}, \quad r=\sqrt{\frac{I_{0}}{A_{0} L^{2}}} .
$$

As a numerical examples let us consider the beam with ratio $E / G=2 \cdot 6$, shear factor $k=5 / 6$ and $J=M J^{* 2}$. The beam is discretized into 20 rigid bars. In Table 1 are shown the frequency coefficients p_{i} for various factors r and for increasing Y^{*}. For the sake of comparison, the same results are also given, as obtained by means of the finite element method (FEM): see Laura et al. [8]. Due to the nature of the two methods, it is evident that the free vibration frequencies, as obtained by means of the Lagrangian procedure, will be slightly lower than the corresponding frequencies obtained by adopting the finite element approach. The discrepancies can become significant for the higher mode, and increase for increasing Y^{*} value. On the other hand, they can be reduced by increasing both the discretization levels, so that a narrow lower-upper bound to the true solution can be obtained.

The three mode shapes of the beam for $r=0 \cdot 08, h^{*}=0 \cdot 8, Z=0$ and various values of Y^{*} are shown in Figure 3(a)-(c). It can be noticed that the presence of the tip mass becomes noticeable for the higher modes, and obviously it reduces the free end displacement. For

Figure 4. First three mode shapes: influence of tip mass inertia: $-Z=0 \cdot 25$; --- $Z=0 \cdot 5$.

Figure 5. First three mode shapes: influence of r parameter: -_r $=0.04 ;----, r=0.08$.
$Y^{*} \rightarrow \infty$ this displacement tends to zero, and the $(n+1)$ th vibration mode tends to the corresponding nth vibration mode of the clamped-pinned beam.

In Figure 4 are shown for $Y^{*}=1$ and various Z. The results for $r=0.04$ and 0.08 are given in Figure 5. It is evident that for $r=0$ the classical Euler-Bernoulli results are recovered, and consequently the beam becomes more flexible as r increases.

Finally, in Table 2, the $p_{i}(i=1-4)$ coefficients for $r=0 \cdot 08, h^{*}=0 \cdot 8, Y^{*}=1$ and various values Z are given.

It seems intuitive that the rotation at L becomes smaller when Z increases. The proposed approach is particularly useful for beams with complex geometry and different boundary conditions. Moreover, together with the variational Ritz-like methods, it allows deduction of narrow lower-upper bounds to the true results.

Table 2
First four frequency coefficients p_{i} for $r=0 \cdot 08, Y^{*}=l$ and various Z values

Z	p_{1}	p_{2}	p_{3}	p_{4}
0	1.3622	12.074	$30 \cdot 236$	51.370
0.25	1.2845	5.446	16.340	33.690
0.5	1.0917	3.322	15.854	33.563
1	0.7188	2.545	15.740	33.532

REFERENCES

1. C. W. S. To 1981 Journal of Sound and Vibration 78, 475-484. A linearly tapered beam finite element incorporating shear deformation and rotary inertia for vibration analysis.
2. C. W. S. To 1982 Journal of Sound and Vibration 83, 445-460. Vibration of a cantilever beam with a base excitation and tip mass.
3. W. L. Cleghorn and B. Tabarrok 1992 Journal of Sounds and Vibration 152, 461-470. Finite element formulation of tapered Timoshenko beam for free lateral vibration analysis.
4. R. E. Rossi, P. A. A. Laura and R. H. Gutierrez 1990 Journal of Sound and Vibration 143, 491-502. A note on transverse vibrations of a Timoshenko beam of non-uniform thickness clamped at one end and carrying a concentrated mass at the other.
5. P. A. A. Laura and R. H. Gutierrez 1986 Journal of Sound and Vibration 108, 123-131. Vibration of an elastically restrained cantilever beam of varying cross-section with tip mass of finite length.
6. J. C. Bruch and T. P. Mitchell 1987 Journal of Sound and Vibration 114, 341-345. Vibration of mass-loaded clamped-free Timoshenko beam.
7. H. Abramovich and O. Hamburger 1991 Journal of Sound and Vibration 148, 162-170. Vibration of a cantilever Timoshenko beam with a tip mass.
8. P. A. A. Laura, R. E. Rossi and M. J. Maurizi 1992 IMA Publication 92-15, Bahia Blanca, A tribute to the 70th anniversary of the publication of Prof. S. Timoshenko's epoch making contribution.
9. Przemieniecki 1968 Theory of Matrix Structural Analysis. New York: McGraw-Hill.
10. B. Downs 1997 Journal of Applied Mechanics, 737-742. Transverse vibrations of cantilever beams unequal breadth and depth tapers.
11. N. M. Auciello 1993 Proceedings of Developments in Computational Engineering Mechanics 237-241. Edinburgh. Free vibration of Timoshenko beams with variable cross sections: a Lagrangian approach.

APPENDIX: NOMENCLATURE

h^{*}	taper ratio
E, G	Young's modulus, shear modulus
L	span of the beam
l_{i}	length of the i th rigid bar
I, A	moment of inertia, cross-section
m_{i}, m_{t}	i th mass, beam mass
M, I_{M}	mass at the tip; moment of inertia of the mass
J^{*}	radius of inertia of the mass
k	shear factor
\mathbf{c}	vector Lagrangian co-ordinates
v_{i}	displacements of the bars
\mathbf{M}_{M}	mass matrix
$\overline{\mathbf{M}}$	matrix of the rotatory inertia

\tilde{Y}^{*}, Z	non-dimensional parameters
t	number of rigid bars
$\Delta \varphi, \Delta v$	relative rotation, relative displacements
φ_{M}	rotation of the mass at the tip
ρ	mass density
ω, λ	free frequency, frequency coefficient

[^0]: * Work partially supported by Italian M.U.R.S.T. 60\%

